I am trying to crop the center of the images in image data generator using keras. I have images of size 192x192 and I want to crop the center of them so that the output batches will be 150x150 or something similar.
Could I do this immediately in Keras ImageDataGenerator? I guess no, since I saw the the target_size argument in datagenerator smashes the images. 
I found this link for random cropping: https://jkjung-avt.github.io/keras-image-cropping/
I have already modified the crop as follows:
def my_crop(img, random_crop_size):
  if K.image_data_format() == 'channels_last':
    # Note: image_data_format is 'channel_last'
    assert img.shape[2] == 3
    height, width = img.shape[0], img.shape[1]
    dy, dx = random_crop_size #input desired output size
    start_y = (height-dy)//2
    start_x = (width-dx)//2
    return img[start_y:start_y+dy, start_x:(dx+start_x), :]
  else:
      assert img.shape[0] == 3
      height, width = img.shape[1], img.shape[2]
      dy, dx = random_crop_size  # input desired output size
      start_y = (height - dy) // 2
      start_x = (width - dx) // 2
      return img[:,start_y:start_y + dy, start_x:(dx + start_x)]
def crop_generator(batches, crop_length):
    '''
    Take as input a Keras ImageGen (Iterator) and generate
    crops from the image batches generated by the original iterator
    '''
    while True:
        batch_x, batch_y = next(batches)
       #print('the shape of tensor batch_x is:', batch_x.shape)
        #print('the shape of tensor batch_y is:', batch_y.shape)
        if K.image_data_format() == 'channels_last':
         batch_crops = np.zeros((batch_x.shape[0], crop_length, crop_length, 3))
        else:
         batch_crops = np.zeros((batch_x.shape[0], 3, crop_length, crop_length))
        for i in range(batch_x.shape[0]):
            batch_crops[i] = my_crop(batch_x[i], (crop_length, crop_length))
        yield (batch_crops, batch_y)
This solution seems to me very slow, please is there any other more efficient way? what would you suggest?
Thanks in Advance
I tried to solve it in this way:
def crop_generator(batches, crop_length):
  while True:
    batch_x, batch_y = next(batches)
    start_y = (img_height - crop_length) // 2
    start_x = (img_width - crop_length) // 2
    if K.image_data_format() == 'channels_last':
        batch_crops = batch_x[:, start_x:(img_width - start_x), start_y:(img_height - start_y), :]
    else:
        batch_crops = batch_x[:, :, start_x:(img_width - start_x), start_y:(img_height - start_y)]
    yield (batch_crops, batch_y)
still if you have better way please give your suggestions.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With