I have read other related questions but I do not find the answer.
I want to create a DataFrame from a case class in Spark 2.3. Scala 2.11.8.
Code
package org.XXX
import org.apache.spark.sql.SparkSession
object Test {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName("test")
.getOrCreate()
case class Employee(Name:String, Age:Int, Designation:String, Salary:Int, ZipCode:Int)
val EmployeesData = Seq( Employee("Anto", 21, "Software Engineer", 2000, 56798))
val Employee_DataFrame = EmployeesData.toDF
spark.stop()
}
}
Here is what I tried in spark-shell:
case class Employee(Name:String, Age:Int, Designation:String, Salary:Int, ZipCode:Int)
val EmployeesData = Seq( Employee("Anto", 21, "Software Engineer", 2000, 56798))
val Employee_DataFrame = EmployeesData.toDF
Error
java.lang.VerifyError: class org.apache.spark.sql.hive.HiveExternalCatalog overrides final method alterDatabase.(Lorg/apache/spark/sql/catalyst/catalog/CatalogDatabase;)V
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:763)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:467)
at java.net.URLClassLoader.access$100(URLClassLoader.java:73)
at java.net.URLClassLoader$1.run(URLClassLoader.java:368)
at java.net.URLClassLoader$1.run(URLClassLoader.java:362)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:361)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:335)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog$lzycompute(HiveSessionStateBuilder.scala:53)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog(HiveSessionStateBuilder.scala:52)
at org.apache.spark.sql.hive.HiveSessionStateBuilder$$anon$1.<init>(HiveSessionStateBuilder.scala:69)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.analyzer(HiveSessionStateBuilder.scala:69)
at org.apache.spark.sql.internal.BaseSessionStateBuilder$$anonfun$build$2.apply(BaseSessionStateBuilder.scala:293)
at org.apache.spark.sql.internal.BaseSessionStateBuilder$$anonfun$build$2.apply(BaseSessionStateBuilder.scala:293)
at org.apache.spark.sql.internal.SessionState.analyzer$lzycompute(SessionState.scala:79)
at org.apache.spark.sql.internal.SessionState.analyzer(SessionState.scala:79)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:172)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:178)
at org.apache.spark.sql.Dataset$.apply(Dataset.scala:65)
at org.apache.spark.sql.SparkSession.createDataset(SparkSession.scala:470)
at org.apache.spark.sql.SQLContext.createDataset(SQLContext.scala:377)
at org.apache.spark.sql.SQLImplicits.localSeqToDatasetHolder(SQLImplicits.scala:228)
There is no issue in the piece of code you copied from the link shared, as error explains it's something else (exact code copy result in my run below).
case class Employee(Name:String, Age:Int, Designation:String, Salary:Int, ZipCode:Int)
val EmployeesData = Seq( Employee("Anto", 21, "Software Engineer", 2000, 56798))
val Employee_DataFrame = EmployeesData.toDF
Employee_DataFrame.show()
Employee_DataFrame:org.apache.spark.sql.DataFrame = [Name: string, Age: integer ... 3 more fields]'
+----+---+-----------------+------+-------+
|Name|Age| Designation|Salary|ZipCode|
+----+---+-----------------+------+-------+
|Anto| 21|Software Engineer| 2000| 56798|
+----+---+-----------------+------+-------+
To be able to use implicit conversion to DataFrame you have to import spark.implicits._ like :
val spark = SparkSession
.builder
.appName("test")
.getOrCreate()
import spark.implicits._
This way the conversion should work.
In case you are using Spark Shell this is not needed as the Spark session is already created and the specific conversion functions imported.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With