What would be some useful guidelines for converting Coq source to Idris (e.g. how similar are their type systems and what can be made of translating the proofs)? From what I gather, Idris' built-in library of tactics is minimal yet extendable, so I suppose with some extra work this should be possible.
I've recently translated a chunk of Software Foundations and did a partial port of {P|N|Z}Arith, some observations I've made in the process:
Generally using Idris tactics (in their Pruvloj/Elab.Reflection form) is not really recommended at the moment, this facility is somewhat fragile, and pretty hard to debug when something goes wrong. It's better to use the so-called "Agda style", relying on pattern matching where possible. Here are some rough equivalences for simpler Coq tactics:
intros - just mention variables on the LHSreflexivity - Refl
apply- calling the function directlysimpl - simplification is done automatically by Idrisunfold - also done automatically for yousymmetry - sym
congruence/f_equal - cong
split - split in LHSrewrite - rewrite ... in
rewrite <- - rewrite sym $ ... in
rewrite in - to rewrite inside something you have as a parameter you can use the replace {P=\x=>...} equation term construct. Sadly Idris is not able to infer P most of the time, so this becomes a bit bulky. Another option is to extract the type into a lemma and use rewrites, however this won't always work (e.g., when replace makes a large chunk of a term disappear)destruct - if on a single variable, try splitting in LHS, otherwise use the with constructinduction - split in LHS and use a recursive call in a rewrite or directly. Make sure that at least one of arguments in recursion is structurally smaller, or you'll fail totality and won't be able to use the result as a lemma. For more complex expressions you can also try SizeAccessible from Prelude.WellFounded.trivial - usually amounts to splitting in LHS as much as possible and solving with Reflsassert - a lemma under where
exists - dependent pair (x ** prf)
case - either case .. of or with. Be careful with case however - don't use it in anything you will later want to prove things about, otherwise you'll get stuck on rewrite (see issue #4001). A workaround is to make top-level (currently you can't refer to lemmas under where/with, see issue #3991) pattern-matching helpers.revert - "unintroduce" a variable by making a lambda and later applying it to said variableinversion - manually define and use trivial lemmas about constructors:
-- injectivity, used same as `cong`/`sym`
FooInj : Foo a = Foo b -> a = b
FooInj Refl = Refl
-- disjointness, this sits in scope and is invoked when using `uninhabited`/`absurd`
Uninhabited (Foo = Bar) where
uninhabited Refl impossible
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With