Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

convert to df column to datetime - raise SettingWithCopyWarning

I have a Pandas DataFrame 'Date' column that I'm trying to convert to datetime. It's converting, and raising "SettingWithCopyWarning"

I tried to follow other excellent explanations like: How to deal with SettingWithCopyWarning in Pandas?, and others, but couldn't figure it out. Thank you all!

my original code:

import numpy as np
import pandas as pd

data = pd.DataFrame(pd.read_excel('Restaurant Shifts Data.xlsx', na_values='-'))    # (-) value in cash
data.fillna(0)

columns = ['Waiter','Start','Finish','Cash','Credit','Total Hours','Total Shift','Date','Shift','Shift manager']
restaurant_data = data[columns]
restaurant_data[['Cash', 'Credit','Total Shift']] = restaurant_data[['Cash', 'Credit','Total Shift']].apply(pd.to_numeric)
restaurant_data['Date'] = pd.to_datetime(restaurant_data['Date'])
restaurant_data['Day'] = restaurant_data['Date'].dt.day_name()

Tried different combinations with .loc: restaurant_data.loc[:,'Date'] = pd.to_datetime(restaurant_data['Date'])

Date (data example)

0 2020-01-01

1 2020-01-01

2 2020-01-01

Full error message

...\python\python38-32\lib\site-packages\pandas\core\frame.py:2963: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  self[k1] = value[k2]
<ipython-input-51-0b817be48c52>:10: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  restaurant_data['Date'] = pd.to_datetime(restaurant_data['Date'])
like image 778
Eliran Nider Avatar asked Oct 17 '25 08:10

Eliran Nider


1 Answers

Use the .loc syntax for getting and setting values. This syntax has the benefit of being clearer (i.e., it is more apparent whether you are referencing rows or columns).

You write that you tried .loc, but you don't show the code that didn't work. Try the below.

import numpy as np
import pandas as pd

data = pd.DataFrame(pd.read_excel('Restaurant Shifts Data.xlsx', na_values='-'))    # (-) value in cash
data.fillna(0)

columns = ['Waiter','Start','Finish','Cash','Credit','Total Hours','Total Shift','Date','Shift','Shift manager']
restaurant_data = data.loc[:, columns]
restaurant_data.loc[:, ['Cash', 'Credit','Total Shift']] = restaurant_data.loc[:, ['Cash', 'Credit','Total Shift']].apply(pd.to_numeric)
restaurant_data.loc[:, 'Date'] = pd.to_datetime(restaurant_data.loc[:, 'Date'])
restaurant_data.loc[:, 'Day'] = restaurant_data.loc[:, 'Date'].dt.day_name()
like image 51
jakub Avatar answered Oct 19 '25 20:10

jakub



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!