I'm very sure there should be a simple alternative but I'm not able to figure it out. Currently using a for loop which is not optimal. My dataframe is like this:
NAME <- c("ABC", "ABC", "ABC", "DEF", "GHI", "GHI", "JKL", "JKL", "JKL", "MNO")
YEAR <- c(2012, 2013, 2014, 2012, 2012, 2013, 2012, 2014, 2016, 2013)
MARKS <- c(45, 75, 95, 91, 75, 76, 85, 88, 89, 77)
MAXIMUM <- c(95, NA, NA, 91, 76, NA, 89, NA, NA, 77)
DF <- data.frame(
NAME,
YEAR,
MARKS,
MAXIMUM
)
> DF
NAME YEAR MARKS MAXIMUM
1 ABC 2012 45 95
2 ABC 2013 75 NA
3 ABC 2014 95 NA
4 DEF 2012 91 91
5 GHI 2012 75 76
6 GHI 2013 76 NA
7 JKL 2012 85 89
8 JKL 2014 88 NA
9 JKL 2016 89 NA
10 MNO 2013 77 77
I want to have only one name per row and each year-wise details (YEAR, MARKS and MAXIMUM columns) should be spread as individual headers. I have tried to use tidyr::pivot_wider
function but was not successful.
I have given the sample output here:
Required output
Perhaps you could enumerate by NAME
first based on row_number()
. Then, use pivot_wider
:
library(tidyverse)
DF %>%
group_by(NAME) %>%
mutate(n = row_number()) %>%
pivot_wider(NAME, names_from = n, values_from = c(YEAR, MARKS, MAXIMUM))
Output
NAME YEAR_1 YEAR_2 YEAR_3 MARKS_1 MARKS_2 MARKS_3 MAXIMUM_1 MAXIMUM_2 MAXIMUM_3
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ABC 2012 2013 2014 45 75 95 95 NA NA
2 DEF 2012 NA NA 91 NA NA 91 NA NA
3 GHI 2012 2013 NA 75 76 NA 76 NA NA
4 JKL 2012 2014 2016 85 88 89 89 NA NA
5 MNO 2013 NA NA 77 NA NA 77 NA NA
Or, as mentioned by @RobertoT, you could make YEAR
a factor and then line up your YEAR
values. Using complete
you can fill in NA
for missing YEAR
. The final select
will order your columns.
DF$YEAR_FAC = factor(DF$YEAR)
DF %>%
group_by(NAME) %>%
complete(YEAR_FAC, fill = list(YEAR = NA)) %>%
mutate(n = row_number()) %>%
pivot_wider(NAME, names_from = n, values_from = c(YEAR, MARKS, MAXIMUM)) %>%
select(NAME, ends_with(as.character(1:nlevels(DF$YEAR_FAC))))
Output
NAME YEAR_1 MARKS_1 MAXIMUM_1 YEAR_2 MARKS_2 MAXIMUM_2 YEAR_3 MARKS_3 MAXIMUM_3 YEAR_4 MARKS_4 MAXIMUM_4
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ABC 2012 45 95 2013 75 NA 2014 95 NA NA NA NA
2 DEF 2012 91 91 NA NA NA NA NA NA NA NA NA
3 GHI 2012 75 76 2013 76 NA NA NA NA NA NA NA
4 JKL 2012 85 89 NA NA NA 2014 88 NA 2016 89 NA
5 MNO NA NA NA 2013 77 77 NA NA NA NA NA NA
In addition to @Ben+1 solution we could a code that I recently learned to order the columns Combining two dataframes with alternating column position
DF %>%
group_by(NAME) %>%
mutate(n = row_number()) %>%
pivot_wider(NAME, names_from = n, values_from = c(YEAR, MARKS, MAXIMUM)) %>%
select(-NAME) %>%
dplyr::select(all_of(c(matrix(names(.), ncol = 3, byrow = TRUE))))
NAME YEAR_3 MARKS_3 MAXIMUM_3 YEAR_1 MARKS_1 MAXIMUM_1 YEAR_2 MARKS_2 MAXIMUM_2
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ABC 2014 95 NA 2012 45 95 2013 75 NA
2 DEF NA NA NA 2012 91 91 NA NA NA
3 GHI NA NA NA 2012 75 76 2013 76 NA
4 JKL 2016 89 NA 2012 85 89 2014 88 NA
5 MNO NA NA NA 2013 77 77 NA NA NA
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With