I want to check if a given number can be formed by another number say b
and reverse(b)
. For example 12 == 6+6
, 22 == 11 + 11
and 121 == 29+92
. One thing I have figured out is if the number is multiple of 11 or it is an even number less than 20, then it can be formed. I tried to implement this below:
num = 121
if num%11==0:
print('Yes')
else:
if num%2==0 and num<20:
print('Yes')
else:
for j in range(11,(int(num)//2)+1):
if j+int(str(j)[::-1])==num:
print('Yes')
break
However, if the condition goes into the for
loop, it gives TLE
. Can any other conditions be given?
Update: If the reversed number has trailing zeroes, it should be removed and then added. For example: 101 == 100+1
. I am looking for an optimized form of my code. Or I think I am missing some conditions which can take O(1) time, similar to the condition if num%11==0: print('Yes')
All the previous answers are not really a check. It's more a brute force try and error. So let's do it a little bit smarter.
We start with a number, for example 246808642. we can reduce the problem to the outer 2 place values at the end and start of the number. Let us call this values A and B at the front and Y and Z on the back. the rest, in the middle, is Π. So our number looks now ABΠYZ with A = 2, B = 4, Π = 68086, Y = 4 and Z = 2. (one possible pair of numbers to sum up for this is 123404321). Is A equal to 1, this is only possible for a sum greater 10 (An assumption, but i guess it works, some proof would be nice!).
so if it is a one, we know that the second last number is one greater by the carry over. So we ignore A for the moment and compare B to Z, because they should be the same because both are the result of the addition of the same two numbers. if so, we take the remaining part Π and reduce Y by one (the carry over from the outer addition), and can start again at the top of this chart with Π(Y-1). Only a carry over can make B one bigger than Z, if it's so, we can replace B by one and start with 1Π(Y-1) at the top. B-1!=Z and B!=Z, we can stop, this isnt possible for such a number which is the sum of a number and its reversed.
If A != 1, we do everything similiar as before but now we use A instead of B. (I cut this here. The answer is long enough.)
The code:
import time
def timing(f):
def wrap(*args, **kwargs):
time1 = time.time()
ret = f(*args, **kwargs)
time2 = time.time()
print('{:s} function took {:.3f} ms'.format(f.__name__, (time2-time1)*1000.0))
return ret
return wrap
@timing
def check(num):
num = str(num)
if (int(num) < 20 and int(num)%2 == 0) or (len(num) ==2 and int(num)%11 == 0):
return print('yes')
if len(num) <= 2 and int(num)%2 != 0:
return print('no')
# get the important place values of the number x
A = num[0]
B = num[1]
remaining = num[2:-2]
Y = num[-2]
Z = num[-1]
# check if A = 1
if A == '1':
# A = 1
# check if B == Z
if B == Z:
# so the outest addition matches perfectly and no carry over from inner place values is involved
# reduce the last digit about one and check again.
check(remaining + (str(int(Y)-1) if Y != '0' else '9'))
elif int(B)-1 == int(Z):
# so the outest addition matches needs a carry over from inner place values to match, so we add to
# to the remaining part of the number a leading one
# we modify the last digit of the remaining place values, because the outest had a carry over
check('1' + remaining + (str(int(Y)-1) if Y != '0' else '9'))
else:
print("Not able to formed by a sum of a number and its reversed.")
else:
# A != 1
# check if A == Z
if A == Z:
# so the outest addition matches perfectly and no carry over from inner place values is involved
check(B + remaining + Y)
elif int(A) - 1 == int(Z):
# so the outest addition matches needs a carry over from inner place values to match, so we add to
# to the remaining part of the number a leading one
# we modify the last digit of the remaining place values, because the outest had a carry over
check('1' + B + remaining + Y)
else:
print("Not able to formed by a sum of a number and its reversed.")
@timing
def loop_check(x):
for i in range(x + 1):
if i == int(str(x - i)[::-1]) and not str(x - i).endswith("0"):
print('yes, by brute force')
break
loop_check(246808642)
check(246808642)
Result:
yes, by brute force
loop_check function took 29209.069 ms
Yes
check function took 0.000 ms
And another time we see the power of math. Hope this work for you!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With