I've been trying to implement a basic neural network in tensorflow, the input is just random data of ones/zeros in (x,y,z), however I want my network to output a 1 whenever x = 1 and output a 0 otherwise.
This is my network code
import tensorflow as tf
import numpy as np
x_data = np.array([[0,0,1],
[0,1,1],
[1,0,0],
[0,1,0],
[1,1,1],
[0,1,1],
[1,1,1]])
x_test = np.array([[1,1,1], [0,1,0], [0,0,0]])
y_data = np.array([0,0,1,0,1,0,1])
iters = 1000
learning_rate = 0.1
weights = {
'w1': tf.Variable(tf.random_normal([3, 5])),
'w2': tf.Variable(tf.random_normal([5, 1])),
}
bias = {
'b1': tf.Variable(tf.random_normal([5])),
'b2': tf.Variable(tf.random_normal([1])),
}
def predict(x, weights, bias):
l1 = tf.add(tf.matmul(x, weights['w1']), bias['b1'])
l1 = tf.nn.sigmoid(l1)
out = tf.add(tf.matmul(l1, weights['w2']), bias['b2'])
return out
x = tf.placeholder(tf.float32, shape=(None,3))
y = tf.placeholder(tf.float32, shape=(None))
pred = predict(x, weights, bias)
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.global_variables_initializer()
# graph
with tf.Session() as sess:
sess.run(init)
for i in range(0, iters):
_, c = sess.run([optimizer, cost], feed_dict={x: x_data, y: y_data})
if i % 100 == 0:
print("cost: " + str(c))
print(sess.run(weights['w1']))
print(sess.run(pred, feed_dict={x: x_test}))
Which outputs
[-0.37119362]
[-0.23264697]
[-0.14701667]
However my test data should output [1,0,0], I'm really not sure whats wrong here. I've tried playing with the hyperparameters and looking on stackoverflow. I've also tried using softmax_cross_entropy as a cost function, although it gives me an error saying the logits is not the same shape as labels.
Does anyone know why this isn't outputting what I'm expecting?
First, you need to pass through an activation function (ie tf.nn.sigmoid
) before the output.
Make sure that tf.nn.sigmoid_cross_entropy_with_logits
takes the logits (before the sigmoid activation).
Also you had a shape issue with your input y_data
that was (7)
instead of (7, 1)
Here is a working version of your code:
import tensorflow as tf
import numpy as np
x_data = np.array([[0,0,1],
[0,1,1],
[1,0,0],
[0,1,0],
[1,1,1],
[0,1,1],
[1,1,1]])
x_test = np.array([[1,1,1], [0,1,0], [0,0,0]])
y_data = np.array([[0],[0],[1],[0],[1],[0],[1]])
iters = 1000
learning_rate = 0.1
weights = {
'w1': tf.Variable(tf.random_normal([3, 5])),
'w2': tf.Variable(tf.random_normal([5, 1])),
}
bias = {
'b1': tf.Variable(tf.random_normal([5])),
'b2': tf.Variable(tf.random_normal([1])),
}
def predict(x, weights, bias):
l1 = tf.add(tf.matmul(x, weights['w1']), bias['b1'])
l1 = tf.nn.sigmoid(l1)
out = tf.add(tf.matmul(l1, weights['w2']), bias['b2'])
return out
x = tf.placeholder(tf.float32, shape=(None,3))
y = tf.placeholder(tf.float32, shape=(None,1))
pred = predict(x, weights, bias)
pred_postactivation = tf.nn.sigmoid(pred)
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.global_variables_initializer()
# graph
with tf.Session() as sess:
sess.run(init)
for i in range(0, iters):
_, c = sess.run([optimizer, cost], feed_dict={x: x_data, y: y_data})
if i % 100 == 0:
print("cost: " + str(c))
print(sess.run(weights['w1']))
print(sess.run(pred_postactivation, feed_dict={x: x_test}))
Which outputs:
cost: 1.23954
cost: 0.583582
cost: 0.455403
cost: 0.327644
cost: 0.230051
cost: 0.165296
cost: 0.123712
cost: 0.0962315
cost: 0.0772587
cost: 0.0636141
[[ 0.94488049 0.78105074 0.81608331 1.75763154 -4.47565413]
[-2.61545444 0.26020721 0.151407 1.33066297 1.00578034]
[-1.2027328 0.05413296 -0.13530347 -0.39841765 0.16014417]]
[[ 0.92521071]
[ 0.05481482]
[ 0.07227208]]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With