Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

At what phase in rendering does clipping occur?

I've got some OpenGL drawing code that I'm trying to optimize. It's currently testing all drawing objects for visibility client-side before deciding whether or not to send rendering data to OpenGL. (This is easier than it sounds. It's drawing a 2D scene so clipping is trivial: just test against the current coordinates of the viewport rectangle.)

It occurs to me that the entire model could be greatly simplified by passing the entire scene to OpenGL and letting the GPU take care of the clipping. But sometimes the total can be very, very complex, involving up to 100,000 total sprites, most of which never get rendered because they're off-camera, and I'd prefer to not end up killing the framerate in the name of simplicity.

I'm using OpenGL 2.0, and I've got a pretty simple vertex shader and a much more complicated fragment shader. Is there any guarantee that says that if the vertex shader runs and determines coordinates that are completely off-camera for all vertices of a polygon, that a clipping test will be applied somewhere between there and the fragment shader and prevent the fragment shader from ever running for that polygon? And if so, is this automatic or is there something I need to do to enable it? I've looked around online for information on this but I haven't found anything conclusive...

like image 811
Mason Wheeler Avatar asked Dec 06 '25 10:12

Mason Wheeler


1 Answers

Clipping happens after the vertex transform stage before and after the NDC space; clip planes are applied in clip space, viewport clipping is done in NDC space. That is one step before rasterizing. Clipping means, that a face only partially visible is "cut" by inserting new vertices at the visibility border, or fragments outside the viewport discarded. What you mean is usually called culling. Faces completely outside the viewport are culled, at the same stage like clipping.

From a performance point of view, the best code is code never executed, and the best data is data never accessed. So in your case sending off a single drawing call that makes the GPU process a large batch of vertices clearly takes load off the CPU, but it consumes GPU processing power. Culling those vertices before sending the drawing command consumes CPU power, but takes load off the GPU. The goal is to find the right balance. If the number of vertices is low, a simple brute force approach (just render the whole thing) may easily outperform ever other scheme.

However using a simple, yet effective data management scheme can greatly improve performance on both ends. For example a spatial subdivision structure like a Kd tree is easily built (you don't have to balance it). Sorting the vertices into the Kd tree you can omit (cull) large portions of the tree if one branch near to the root is completely outside the viewport. Preparing drawing a frame you iterate through the visible parts of the tree, building the list of vertices to draw, then you pass this list to the rendering command. Kd trees can be traversed on average in O(n log n) time.

like image 106
datenwolf Avatar answered Dec 08 '25 06:12

datenwolf



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!