I'm designing a distributed system with a certain flow of data in it. I'd like to guarantee that at least N nodes have almost-current data at any given time. I do not need complete consistency, only eventual consistency (t.i. for any time instant, the current snapshot of data should eventually appear on at least N nodes. It is tricky to define the term "current" here, but still). Nodes may fail and go back up at any moment, and there is no single "central" node.
O overflowers! Point me to some good papers describing replication schemes. I've so far found one: Consistency Management in Optimistic Replication Algorithms and a more broad and recent article by the same author: Optimistic Replication.
A lot of the trick to this is finding your exact requirements, and yours still sound pretty vague. Do you just need to support operations like this?
You mentioned you need eventual consistency. So if you do a single update, it will eventually replicate everywhere. If you do two nearly-simultaneous updates, do you care which one wins? If one replica reports that an update was successfully completed, do you care if the value could be lost if that replica were to temporarily crash shortly afterward? Or if that replica were permanently destroyed?
How precise should somewhat-recent be? If there's a netsplit or something, a lookup might return a very stale result or just fail. Do you care which?
Do you ever need to support fancier operations like...
Do you have rigid reliability, latency, and/or bandwidth requirements? How far apart are your replicas / how good is the network between? This impacts if you can have cross-replica communication on every update and even on every lookup; or even if you can/should fail over operations to a remote replica if the local one seems to be down.
Depending on your answers here, I've worked with a couple different schemes that might meet your requirements. There are several possible variations on them.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With